
PAGE 1

Addressing legacy constraints

Building flexibility into your technology platforms to enable
business agility

PAGE 2

The future of the Operating Model

As a recognised leader in IT and Digital Operating model design and transformation, Mozaic has

delivered wholescale change in over a hundred, large complex estates over the past 10 years –

possibly more than any other single organisation during that period. Our team includes ex-CIOs

and CTOs from across a broad range of industries, giving us a unique perspective on the past,

and on the next phase of operating model change that will affect us all.

THE SERIES

This whitepaper is one of a series that looks at the future of the operating model and details the

specific areas of change that organisations will need to embark upon to transform to Enterprise

Product and achieve excellence in technology delivery.

 The future of the technology operating model

 Focusing on value

 The importance of culture in transformation

 Measure the things that really matter

 Aligning sourcing models to support Enterprise Product

 Value stream management - it’s time to stop throttling change

 Data driven operations

 Addressing legacy constraints

The full catalogue of papers can be found on the Mozaic website at https://mozaic.net/insights/.

Accompanying the series, Mozaic offers a range of complementary workshops, which look in more

detail at the subject areas, and help teams to better understand the challenges and opportunities in

their context.

If you would like to know more, please contact us at info@mozaic.net or call us on 0203 709 1625.

https://mozaic.net/insights/
mailto:info@mozaic.net

PAGE 3

Enabling agility

The latest evolution of the Technology Operating Model, Enterprise Product, offers significant

advantages delivering greatly improved technology and business agility. But speed to market is

often constrained by legacy platforms, which are complex, time-consuming, and expensive to

change. In this whitepaper, we discuss how these constraints can be addressed by aligning

responsibility into the right area of the Operating Model and iteratively decoupling elements of

the platform through the implementation of microservices architectures.

Enterprise Product is an approach to aligning business and technology with the services that offer

value to customers and users, rather than functional departments or processes. This approach has

several advantages, including:

 Improved customer focus: enabling teams to stay closely aligned with their customer’s

needs and preferences, making it easier to develop products and services that meet these

needs.

 Improved collaboration: By breaking down functional silos and organising teams around

products, the model encourages greater collaboration and teamwork, which leads to more

creative solutions and better outcomes.

 Increased innovation: Teams are empowered to experiment to develop and refine products

and services.

 Improved accountability: Teams are accountable for product outcomes - a product-centric

model promotes a culture of ownership and responsibility, which can lead to better quality

products and services.

 Faster time-to-market: By streamlining processes and focusing on value, a product-centric

model helps organisations get new products to market more quickly and efficiently.

 Greater agility: The model enables organisations to respond more quickly to changing

market conditions, customer demands, and competitive pressures.

Of course, speed to market and agility are dependent upon the technology platforms that are

continually maintained and enhanced.

A legacy system is one that constrains the business when it needs to change. In this context, a

poorly architected system can be regarded as legacy on its day of launch. Old, monolithic systems

based on dated technology don’t stand a chance.

PAGE 4

Constrained by your legacy?

Large, monolithic, highly integrated systems exist in most organisations, and these are usually

accompanied by fear and loathing - they’re seemingly too big and scary to replace, and a constant

source of frustration to customers, business users and IT alike.

Maintaining a legacy platform can be a challenging and resource-intensive task. They invariably use

outdated technology, have limited integration, lack documentation, and many suffer from highly

coupled architectures that lead to scalability issues. It is not uncommon for a legacy platform that

was built initially as a back-office system, to subsequently become a critical part of a high-volume,

high-availability online platform.

Legacy platforms are in essence a specific, and particularly unpleasant, case of technical debt. The

complex, monolithic nature not only makes it difficult to make changes but to do so often

introduces further complexity. This leads to high levels of technical debt, which makes maintenance

more difficult and expensive. It’s a vicious circle.

Maintaining a legacy platform can be a huge challenge and a significant constraint, requiring

expertise and investment to overcome the issues associated with outdated technology.

However, a proven solution to this problem now exists. Breaking these complex systems into

smaller independent applications and services, using a microservices approach, enables change to

be made in small, safe, incremental steps. Taking this approach means that each change can be

delivered quickly whilst enabling parallel working on multiple business needs.

PAGE 5

The advantages of Microservices

Microservices are a well-established, proven, software architectural paradigm that involves

breaking down large applications into small, independent services that can be developed, deployed,

and scaled independently. Each microservice focuses on a specific task or function and

communicates with other microservices through well-defined APIs.

Microservices provide a proven approach through which the challenges of legacy platforms can be

addressed. Importantly they can be implemented incrementally, reducing the constraint, and

adding flexibility in a prioritised order. There is no requirement for a massively complex and

expensive “big bang” change.

Scalability

Microservices enable you to
scale different parts of your
application independently,
allowing you to respond to

changes in demand effectively.

Flexibility

With microservices, you can
develop and deploy each

service independently, which
makes it easier to make

changes to your application.

Better fault isolation

Microservices allow you to
isolate and identify faults

more easily, which makes it
easier to fix issues

independently

Maintainability

Microservices are designed to
be modular, making it easier
to test, maintain, and update

individual services without
affecting the entire system.

Faster time-to-market

With microservices, you can
develop and deploy individual
services more quickly, which

can help you get new features
to market faster.

Technology diversity

Different technologies can be
used for each service, making
it possible to use the best tool
for the job, including the latest

innovations.

Overall, a microservices architecture offers a more flexible, scalable, and resilient approach to

application development that can help you respond to changing business needs more effectively.

Importantly, it provides the flexibility to enable the technology agility required by product teams.

PAGE 6

Organising to address legacy debt

Addressing legacy debt is not simply a technology issue. To succeed, it is essential that the change

approach is baked into the operating model, and that resources and processes are aligned in the

resolution of debt.

In general terms, teams should be delegated the responsibility to address debt as part of their day-

to-day activity of delivering value. And value is key – debt should be addressed (ideally through the

implementation of microservices) only where its resolution delivers clear value to the business.

Debt resolution should not be an end itself and should not lead to big-bang legacy replacement.

Unless, of course, there is a significant value driver e.g. the replacement of a truly obsolescent

system.

As such, debt resolution should be included in the appropriate teams’ backlogs, agreed with

Product Owners and SMEs, and prioritised accordingly. Importantly, their development should be

communicated widely to ensure appropriate sharing and reuse.

PRODUCT OR COMPONENT SERVICE

Typically, microservices are developed and deployed at the component level, in that they are

underpinning services that can be shared by different lines of business, departments and Products.

Sharing of component services allows for their efficient reuse across the organisation.

However, there are cases where the microservices themselves can be viewed as a type of product

and therefore have dedicated product teams.

A good example of this is the development of microservices in the retail banking sector to meet the

PSD2 (Open Banking) policy requirement. Each service had clear value in that it met a regulatory

requirement - it was therefore a requirement to do business. Hence, the majority, if not all banks,

built Open Banking product teams to develop, own and maintain the microservices.

Although the new services were initially intended simply to provide APIs to the legacy platform, in

many cases they became more functionally rich, decoupling functionality from the core and

providing clear value to the customer.

By design these services provide clean access to the legacy platforms and new functionality, thus

addressing the legacy constraint for other product teams, and thereby becoming the preferred

method for core banking integration i.e. it’s much quicker to access the legacy platform through

Open Banking APIs than it is to commission new services. As such, these services morphed into

both products and component services.

Although this is a specific case, it is likely that many organisations will encounter similar

opportunities and organise accordingly to focus on value.

PAGE 7

Migrating to Microservices

Migrating from a legacy system to a microservices architecture can be a complex process, but there

are some general steps you can follow to make the transition smoother:

Understand your legacy system:

Before you begin the migration

process, it's important to understand

your legacy system thoroughly.

Document its architecture,

components, and dependencies, and

identify areas of the system that may

be particularly challenging to migrate.

Define your microservices

architecture: This involves identifying

the services that will make up your

new system and defining how they will

communicate with each other. The

architecture should be decoupled with

clean APIs.

This should include the ownership

between product teams and how they

will work together where there are

cross-dependencies.

Identify the services to migrate first:

Break down the functionality of your

legacy system into smaller, more

manageable services. Agree on a

prioritisation strategy – our

recommendation is provided in the

next section.

Develop and test the microservices:

Incrementally develop and test each

microservice individually. This will help

you identify any issues early on and

ensure that each service works as

expected. It also ensures a naturally

progressive return on investment.

Migrate data: Migrating data can be a

complex process, especially if you're

moving from a monolithic database to

a distributed data architecture.

Develop a plan for migrating data and

test it thoroughly to ensure that data

integrity is maintained.

Monitor and maintain the

microservices: Once your

microservices are deployed, it's

important to monitor them closely and

address any issues that arise. Use tools

like logs and metrics to identify issues

and optimize your microservices over

time.

Remember that the migration process will likely take time and require significant resources. Be

prepared to invest in the migration process and be patient as you work through any challenges that

arise.

PAGE 8

Other considerations

PRIORITISING YOUR APPROACH

When embarking on your Microservices journey, it is important to agree on your implementation

strategy. Although this may evolve over time, it is useful to guide teams and help with integration

planning. Mozaic’s proposed approach is as follows:

 Identify and decouple simple “edge” components.

 Minimise the dependencies of any decoupled component with the monolith.

 Use dependency and structural code analysis tools to identify the most coupling and

constraining factor capabilities in the monolith, and then decoupling those areas.

 Decouple capabilities vertically from the core capability with its data and redirect all front-

end applications to the new APIs. In this way, we avoid the anti-pattern of only decoupling

facades, only decoupling the backend service and never decoupling data.

 Prioritise the decoupling of what is most important to the business and changes frequently.

 Decouple capability and not code.

 Decouple capabilities with appropriate boundaries, not going too small.

 Continue to decouple in a continual approach, with a series of migration steps.

STANDARDISATION AND PATTERNS

One danger, when implementing your architecture, is that insular product squads focused on their

own customers’ challenges can lead to the introduction of duplication, a lack of consistency, and

waste. Here, the solution is the development, management and reuse of standard patterns and

components. This is particularly relevant in the development of Microservices that will span the

enterprise.

The de-coupling of business functionality should naturally divide between product teams, whereas

service such as Application Login may lead to a “Common Component” team, which may not only

be centralised but develop these to be used across many applications.

Ensuring that reusable patterns are collated and made readily available to each Product team is

fundamental to sustaining the velocity of change. A full library of components also significantly

improves the quality and predictability of delivery as well as enabling enterprise-wide controls,

security, and management effectiveness.

To succeed, each pattern needs ownership within the IT/Digital organisation as a technical product

or service component; capability assigned for its ongoing support and improvement; a backlog of

change which should be managed and prioritised against product team needs; to be stored within a

visible an easily accessible library that is available to all product teams; and to be built into the

orchestrated flow of work as default capability.

PAGE 9

What are you waiting for?

Business success is now inexorably linked to the success of IT delivery, and product-oriented

operating models are proven to support agility. Enterprise Product builds upon these models to

drive greater value.

As we have seen, business agility cannot be achieved if legacy platforms are allowed to constrain

technology delivery. Microservices architectures provide a proven approach to addressing this

challenge, an approach all organisations should look to take.

A full architectural transformation is not a simple task; microservice requires significant investment

and ongoing support and maintenance. But the investment is worth making.

Importantly, as microservices are small, decoupled objects, they can be developed and delivered

incrementally, releasing value steadily over a long period, reducing risk and proving the value

return.

Technical debt resolution should not be an end in itself, but often organisations find that the

implementation of Open APIs provides new opportunities to monetise existing data and

functionality. In the case of Open Banking, there are examples of retail banks now offering value-

add services through third parties that integrate with their legacy platforms.

If you’d like to know more about the approach or are embarking on your journey and would like

to benefit from our deep experience, please contact info@mozaic.net, or contact either of the

authors – contact details on the following page.

[END]

PAGE 10

FOR MORE INFORMATION

STEVE TUPPEN

07584 171 013

steve.tuppen@mozaic.net

RUSSELL SMITH

07980 624 738

russell.smith@mozaic.net

LEGAL DISCLAIMER

Copyright © 2023, Mozaic-Services Limited. All Rights Reserved.

No part of this document may be reproduced in any form or by any electronic or mechanical

means, including information storage and retrieval devices or systems, without prior

written permission from Mozaic-Services Limited.

